文 |黃康瑄
來源|智能相對(duì)論(aixdlun)
近日,云從科技、曠視科技及依圖科技等“AI四小龍”披露了上市文件。Microsoft、Google、百度、阿里、騰訊等科技巨頭在AI視覺和AI語音中也具有非常大的聲量,AI視覺與AI語音均成長為百億級(jí)別的市場。相較之下,同樣作為感知研究的AI嗅覺研發(fā)似乎沒那么“火熱”,甚至有些“乏人問津”。
《2020胡潤全球獨(dú)角獸榜》共586家公司中,有63家公司從事人工智能研發(fā),總價(jià)值為1304億美元,絕大多數(shù)專注于自動(dòng)駕駛和人臉識(shí)別技術(shù),并沒有出現(xiàn)以人工智能嗅覺為主的公司。中國科學(xué)院發(fā)布的《全球人工智能企業(yè)TOP20榜單》中,幾乎全部都以計(jì)算機(jī)視覺技術(shù)、自然語言處理技術(shù)或自主無人技術(shù)為發(fā)展重心,至今尚未出現(xiàn)AI嗅覺領(lǐng)域的獨(dú)角獸公司。
近年才逐漸成熟的技術(shù)
技術(shù)是AI嗅覺領(lǐng)域難產(chǎn)獨(dú)角獸的主要因素。在人工智能學(xué)習(xí)領(lǐng)域中,嗅覺是最難以捉摸的感官。 不同于有實(shí)體操作對(duì)象的圖片識(shí)別,“虛無縹緲”的氣味無法進(jìn)行空間上的分類和界定。且化學(xué)分子的排列順序變動(dòng)都會(huì)對(duì)氣味造成影響,不易建立化學(xué)成分和氣味香臭的關(guān)聯(lián)。即使人工智能可以辨認(rèn)分子的化學(xué)結(jié)構(gòu),也難以準(zhǔn)確辨別其氣味。
另外,由于氣味感受帶有一定主觀性,不像黃色就是黃色=yellow,毫無爭議。同一種氣味可以形容為“甜膩”也能說是“香濃”,故氣味識(shí)別也是一個(gè)多標(biāo)簽分類問題。
看不見摸不著的東西本來就抽象,加上難以描述,氣味本身的特殊性為氣味數(shù)據(jù)的采集和分類建立了一道難以攻克的城墻。人工智能嗅覺研究起步原本就晚于AI視覺和語音,技術(shù)上的困境讓AI嗅覺研究更加遲緩、不受重視,直至近年才逐漸“開花結(jié)果”。
別聞了,還是用看的吧
為了讓氣味更直觀更形象,研究者們腦洞一開,讓氣味“看的見”不就好了?
“智能相對(duì)論”查詢到,由于現(xiàn)有基于視覺信息的學(xué)習(xí)算法無法直接用于訓(xùn)練AI識(shí)別氣味,一個(gè)由Google、加拿大高等研究院(Canadian Institute For Advanced Research,簡稱CIFAR)、矢量人工智能研究所、多倫多大學(xué)(University of Toronto)和亞利桑那州大學(xué)(University of Arizona)的科學(xué)家組成的研究團(tuán)隊(duì)將氣味分子解釋為圖形,讓氣味“可視化”。
2019年,他們發(fā)表了一篇名為《機(jī)器學(xué)習(xí)氣味:學(xué)習(xí)小分子的通用感知表示》 (Machine Learning for Scent:Learning Generalizable Perceptual Representations of Small Molecules) 的論文,提出利用圖神經(jīng)網(wǎng)絡(luò)(Graph Neural Networks,GNNs),以向量形式代表氣味分子,使人工智能將單個(gè)特定分子與其氣味聯(lián)系起來。
這種訓(xùn)練方法和AI在視覺、聽覺方面的深度學(xué)習(xí)異曲同工,需要豐富的資料作為學(xué)習(xí)素材。具有神經(jīng)網(wǎng)絡(luò)的圖形很適合用于氣味關(guān)系的定量建模,氣味可以被標(biāo)記為多個(gè)分類標(biāo)簽。
除了預(yù)測氣味,GNNs還能用僅有的數(shù)據(jù)對(duì)新提煉出的氣味進(jìn)行分類,有助于發(fā)現(xiàn)新的合成增香劑,從而減少從天然作物中提取香料而造成的生態(tài)影響。這項(xiàng)技術(shù)尚未真正落地,研究團(tuán)隊(duì)還在探討氣味數(shù)字化方面的可能性,希望能沒有嗅覺的人提供解決方案。
想不出原創(chuàng),那就抄昆蟲的作業(yè)吧
相較于“大開腦洞”的氣味分子圖像化,還有一部份科學(xué)家選擇使用模仿昆蟲腦部系統(tǒng)運(yùn)作的神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)算法來訓(xùn)練AI。
比起繁復(fù)的視覺與聽覺神經(jīng)系統(tǒng),生物的嗅覺系統(tǒng)簡單許多。氣味信息僅由少數(shù)幾層神經(jīng)網(wǎng)絡(luò)進(jìn)行分析,沒有過多層級(jí)與復(fù)雜的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),可說是嗅覺識(shí)別系統(tǒng)的優(yōu)勢。
2009年,英國斯科塞斯大學(xué)的Thomas Nowotny搭建了一種基于昆蟲的嗅覺的模型,用來識(shí)別氣味,也可以識(shí)別手寫的數(shù)字。即使去除了大部分神經(jīng)元,也不會(huì)過度影響模型性能。但此技術(shù)僅停留在實(shí)驗(yàn)室內(nèi),并未落地成為產(chǎn)品。2016年,華盛頓大學(xué)(University of Washington)Charles Delahunt研究團(tuán)隊(duì)創(chuàng)造出更完整的模型—模仿煙草天蛾(Manduca sexta)嗅覺結(jié)構(gòu)的人工神經(jīng)網(wǎng)絡(luò),可將氣味信息轉(zhuǎn)化成行為指令。
研究團(tuán)隊(duì)發(fā)現(xiàn),由于神經(jīng)層級(jí)較少且標(biāo)簽各自獨(dú)立,不同于以往需要依靠大量數(shù)據(jù)來學(xué)習(xí)的算法,這種“自然的方法”只需極少數(shù)的樣本,就能實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)的快速學(xué)習(xí),這是仿生嗅覺系統(tǒng)最大的優(yōu)勢。除此之外,生物嗅覺模型擅長檢測背景噪聲中的微弱信號(hào),解決了傳統(tǒng)算法模型遭遇的“雞尾酒會(huì)問題”。
Delahunt指出,“機(jī)器學(xué)習(xí)方法擅長在具備大量數(shù)據(jù)的前提下,提供非常精確的分類器,而昆蟲模型則非常擅長利用少部分?jǐn)?shù)據(jù)快速進(jìn)行粗略分類。” 至此,研究者們才發(fā)現(xiàn)仿生嗅覺算法的最大優(yōu)勢,并開始思考這種算法模型的落地問題。
相較于“計(jì)算所有可能,尋找最優(yōu)解”的傳統(tǒng)算法。生物嗅覺模型仿照生物大腦運(yùn)動(dòng)軌跡,把基本目標(biāo)簡化為識(shí)別哪些隨機(jī)特征與正確結(jié)果間存在相關(guān)性。就像我們看到一個(gè)陌生人,會(huì)不自覺地將他與認(rèn)識(shí)的人做比較,而不會(huì)一一記下他的身高體重肩寬腰圍等所有外貌數(shù)據(jù)。
這種仿生的“一次性學(xué)習(xí)策略”可以讓AI持續(xù)學(xué)習(xí)新的氣味,不會(huì)干擾其他神經(jīng)元。 加入新元素也不需重新學(xué)習(xí),也比依托于大量數(shù)據(jù)庫的傳統(tǒng)算*耗更低,更加“節(jié)能”。
高效低耗的AI鼻子
模仿生物嗅覺系統(tǒng)的算法模型為人工智能神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)扔下一顆火種,點(diǎn)燃了許多科學(xué)家的靈感。以仿生嗅覺算法為基礎(chǔ),近年才逐漸有相關(guān)產(chǎn)品落地。
2017年,尼日利亞的Oshiorenoya Agabi改造小鼠的神經(jīng)元,制造了世界首個(gè)具有嗅覺并可以識(shí)別爆炸物等氣味的芯片Koniku Kore。此芯片是活體神經(jīng)和硅的混合物,可以模擬204個(gè)腦神經(jīng)元的功能,具有能夠檢測和識(shí)別氣味的傳感器。 可用于檢測揮發(fā)性化學(xué)物質(zhì)、爆炸物等氣味 ,代替人類執(zhí)行安檢、排爆等工作。
今年3月,英特爾(intel)神經(jīng)形態(tài)計(jì)算實(shí)驗(yàn)室與康奈爾大學(xué)(Cornell University)推出了進(jìn)階版英特爾自學(xué)習(xí)神經(jīng)擬態(tài)芯片Loihi ,能在明顯的噪聲和遮蓋情況下,成功識(shí)別10種有害氣體。研究人員采用一個(gè)由72個(gè)化學(xué)傳感器活動(dòng)組成的數(shù)據(jù)集,通過配置生物嗅覺的電路圖來“教”Loihi聞味道。
Loihi可通過脈沖或尖峰傳遞氣味信息,利用環(huán)境中的各種反饋信息進(jìn)行自主學(xué)習(xí)、下達(dá)命令。運(yùn)用仿大腦嗅覺電路的神經(jīng)網(wǎng)絡(luò)機(jī)制算法,模仿人類聞到某種氣味后大腦的運(yùn)作機(jī)制。
英特爾的“電子鼻”構(gòu)建出類似人類的鼻腔通道,運(yùn)用了傳感器+算法+神經(jīng)擬態(tài)芯片,能在未知?dú)馕吨凶R(shí)別特定氣味,是氣味傳感技術(shù)的一大突破。
這組神經(jīng)擬態(tài)系統(tǒng)在硬件層面上復(fù)制了生物神經(jīng)元組織、通信和學(xué)習(xí)方式,具有低能耗、低成本、識(shí)別多樣性、易用性 等優(yōu)勢。可以用于診斷疾病、檢測武器和爆炸物,及時(shí)發(fā)現(xiàn)并甄別麻醉劑、煙霧和一氧化碳等有害氣味。
近年來,氣味監(jiān)測服務(wù)逐漸從To B轉(zhuǎn)向To C,進(jìn)而滿足針對(duì)企業(yè)和個(gè)人更加定制化、個(gè)性化的需求。低成本、低能耗且易用的AI鼻子已實(shí)現(xiàn)了人工智能嗅覺領(lǐng)域的技術(shù)突破,但要實(shí)現(xiàn)真正的落地和普及,必須再擴(kuò)展AI鼻子的應(yīng)用范圍。
應(yīng)用范圍“不如人”
擁有應(yīng)用范圍廣泛的專利技術(shù)是AI四小龍的共性。AI嗅覺離獨(dú)角獸之間,可能還差了幾個(gè)應(yīng)用場景。
目前,人工智能的研究以計(jì)算機(jī)視覺技術(shù)、自然語言處理技術(shù)以及自主無人技術(shù)最受關(guān)注。 “智能相對(duì)論”以獲得超過30億美元融資的商湯科技為例,成立伊始就憑借人臉識(shí)別技術(shù)得到小米、華為、美圖秀秀、中國移動(dòng)等大客戶。同時(shí),致力于技術(shù)原創(chuàng),深耕于深度學(xué)習(xí)算法,并搭建了自己的超算平臺(tái)。以“1(基礎(chǔ)研究)+1(產(chǎn)品及解決方案)+X(行業(yè))”的商業(yè)模式為支持,商湯科技已賦能安防、交通、教育、金融等行業(yè),幾乎在所有視覺場景中都有布局。
相較之下,AI嗅覺雖具有一定的實(shí)用性,但應(yīng)用范圍遠(yuǎn)不如計(jì)算機(jī)視覺技術(shù)、自然語言處理技術(shù)以及自主無人技術(shù)。以主要用作氣味監(jiān)測、環(huán)境分析與氣味標(biāo)準(zhǔn)化的Intel電子鼻來說,應(yīng)用場景有環(huán)保、醫(yī)療、安防。但由于一般人對(duì)氣體檢測與環(huán)境分析的需求不高, 傳統(tǒng)的氣味傳感器已經(jīng)可以滿足日常生活使用,且人們對(duì)這方面的人工智能嗅覺產(chǎn)品沒有那么大的需求。研究AI嗅覺或許可以改善現(xiàn)有氣味傳感器的不足,但應(yīng)用范圍與產(chǎn)品需求的限制,造成大部份企業(yè)更愿意將資源投入商業(yè)價(jià)值較高的AI視覺、聽覺技術(shù)研發(fā)。
除了技術(shù)本身的瓶頸,應(yīng)用范圍小、企業(yè)投入低所導(dǎo)致的研究人才缺乏 也是造成人工智能嗅覺發(fā)展緩慢的原因。人工智能嗅覺的應(yīng)用范圍不如視覺、語音等領(lǐng)域廣泛,企業(yè)投入低使得就業(yè)面窄、項(xiàng)目落地難度較大。從招聘網(wǎng)站上相關(guān)工作崗位需求量可見,AI視覺相關(guān)人才在招聘市場上炙手可熱,與AI嗅覺呈現(xiàn)強(qiáng)烈對(duì)比。
在就業(yè)不易的情況下,愿意從事AI嗅覺研發(fā)的人才更加匱乏,因此惡性循環(huán)。由于技術(shù)發(fā)展較慢、應(yīng)用場景不多,AI嗅覺領(lǐng)域并未受到學(xué)界與企業(yè)的普遍關(guān)注,自然難以誕生獨(dú)角獸。 目前較為成熟的人工智能嗅覺領(lǐng)域研究成果,依然主要來源于高等院校和研究機(jī)構(gòu)。
現(xiàn)今,技術(shù)難題逐漸被克服,擴(kuò)大應(yīng)用場景與市場容量以增加研究人才與資方投入,成為AI嗅覺技術(shù)造就獨(dú)角獸的必經(jīng)之路。 也許,AI鼻子可進(jìn)入廚房,用于監(jiān)測冰箱食物新鮮度及料理火候;或幫助化妝品、香水氣味標(biāo)準(zhǔn)化,在提高產(chǎn)品質(zhì)量的同時(shí)降低管控成本。人工智能嗅覺獨(dú)角獸的誕生,除了依托于行業(yè)本身的技術(shù)進(jìn)步,也需通過產(chǎn)品創(chuàng)新,來創(chuàng)造新的AI嗅覺需求。
結(jié)語
不同于人工智能視覺、聽覺研究的飛速發(fā)展,緩步前行的AI嗅覺研究也走出了自己的路。除了AI鼻子們帶來的效益,仿生嗅覺算法模型本身的價(jià)值也不容小覷,但人工智能嗅覺技術(shù)的應(yīng)用場景還需要研發(fā)者們多多發(fā)揮想象力,AI嗅覺領(lǐng)域的獨(dú)角獸似乎離我們還有一段距離。
參考資料:
1.Neuroscience News《AI is Acquiring a Sense of Smell that Can Detect Illnesses in Human Breath》
2.ScienceNews《An AI that mimics how mammals smell recognizes scents better than other AI》
3.Benjamin Sanchez-Lengeling,Jennifer N.Wei,Brian K.Lee,Richard C.Gerkin,Alán Aspuru-Guzik,Alexander B.Wiltschko《Machine Learning for Scent:Learning Generalizable Perceptual Representations of Small Molecules》
4.MiHomes《理解人類大腦工作原理,可以從我們的嗅覺系統(tǒng)開始》
5.Alexander B Wiltschko《讓機(jī)器辨別氣味:利用圖神經(jīng)網(wǎng)絡(luò)預(yù)測分子的嗅覺屬性》
6. 中國科學(xué)院《2019年人工智能發(fā)展白皮書》
7. 胡潤研究院《2020胡潤全球獨(dú)角獸排行榜》
8. 毛橘教學(xué)puls《當(dāng)AI能氣味編程時(shí),網(wǎng)友:這才是真正的黑客帝國!》
9. 知社學(xué)術(shù)圈《量子世界的海市蜃樓,和機(jī)器算法的嗅覺,哪一個(gè)更加魔幻呢?》
10. 前瞻網(wǎng)《這種AI識(shí)別新氣味更準(zhǔn)確還能不斷學(xué)習(xí),只因抄了哺乳動(dòng)物的作業(yè)?》
11. 創(chuàng)造一下《你可能不知道,AI已經(jīng)有了嗅覺系統(tǒng)……》
12. 淺淺《研究團(tuán)隊(duì)開發(fā)AI嗅覺能力,通過分析呼吸樣本檢驗(yàn)疾病》
13. 阿?!逗M庋芯繄F(tuán)隊(duì)歸國創(chuàng)業(yè) 「慧聞科技」提供AI嗅覺解決方案》
*本文圖片均來源于網(wǎng)絡(luò)
深挖智能這口井,同好添加vx:zhinengxiaoyan
此內(nèi)容為【智能相對(duì)論】原創(chuàng),
僅代表個(gè)人觀點(diǎn),未經(jīng)授權(quán),任何人不得以任何方式使用,包括轉(zhuǎn)載、摘編、復(fù)制或建立鏡像。
部分圖片來自網(wǎng)絡(luò),且未核實(shí)版權(quán)歸屬,不作為商業(yè)用途,如有侵犯,請(qǐng)作者與我們聯(lián)系。
智能相對(duì)論(微信ID:aixdlun):
•AI產(chǎn)業(yè)新媒體;
•今日頭條青云計(jì)劃獲獎(jiǎng)?wù)逿OP10;
•澎湃新聞科技榜單月度top5;
•文章長期“霸占”鈦媒體熱門文章排行榜TOP10;
•著有《人工智能 十萬個(gè)為什么》
•【重點(diǎn)關(guān)注領(lǐng)域】智能家電(含白電、黑電、智能手機(jī)、無人機(jī)等AIoT設(shè)備)、智能駕駛、AI+醫(yī)療、機(jī)器人、物聯(lián)網(wǎng)、AI+金融、AI+教育、AR/VR、云計(jì)算、開發(fā)者以及背后的芯片、算法等。
申請(qǐng)創(chuàng)業(yè)報(bào)道,分享創(chuàng)業(yè)好點(diǎn)子。點(diǎn)擊此處,共同探討創(chuàng)業(yè)新機(jī)遇!
2023年7月6日,第六屆世界人工智能大會(huì)(WAIC2023)在上海開幕,“人工智能大模型”是本屆大會(huì)的備受矚目的話題,據(jù)悉,在昇騰AI大模型的創(chuàng)新研發(fā)中,華為聯(lián)手26家行業(yè)領(lǐng)軍企業(yè),組建了一支協(xié)同創(chuàng)新的“AI明星隊(duì)”,云天勵(lì)飛作為中國人工智能企業(yè)的杰出代表,和互聯(lián)網(wǎng)大廠、運(yùn)營商、科研院所等優(yōu)秀團(tuán)隊(duì)
這幾個(gè)月來,以ChatGPT為代表的生成式AI展現(xiàn)出的能力令世界驚嘆。自從2016年AlphaGo戰(zhàn)勝李世石掀起了一波AI浪潮后,AI仿佛已經(jīng)沉寂了很久,ChatGPT的橫空出世就如同一束耀眼的光芒,讓AI這個(gè)名詞重回C位。過去在AI1.0時(shí)代,主要通過訓(xùn)練模型來實(shí)現(xiàn)圖像識(shí)別、聲音識(shí)別、語言處理等特
文:互聯(lián)網(wǎng)江湖作者:志剛2023年的IoT需要一個(gè)新故事。6月29日,涂鴉智能在開發(fā)者大會(huì)上,發(fā)布了企業(yè)級(jí)戰(zhàn)略PaaS2.0,希望通過一個(gè)平臺(tái)+四大開發(fā)服務(wù),建立起IoT生態(tài)。對(duì)于這場發(fā)布會(huì),市場的態(tài)度是積極的。美東時(shí)間6月29日收盤,涂鴉智能美股股價(jià)上漲5.6%,來到1.87美元/股。近日股價(jià)穩(wěn)定
美團(tuán)曾經(jīng)的二號(hào)人物王慧文對(duì)標(biāo)OpenAI的創(chuàng)業(yè)項(xiàng)目光年之外,以20億賣給美團(tuán),再度引發(fā)市場對(duì)大模型的熱議。
2020年底,王慧文在朋友圈寫下這句話時(shí),外界本以為這位伴隨中國互聯(lián)網(wǎng)發(fā)展而持續(xù)創(chuàng)業(yè)20年的人物即將告別創(chuàng)業(yè)舞臺(tái)。但是,一個(gè)曾經(jīng)多次創(chuàng)業(yè),正值壯年的互聯(lián)網(wǎng)老將心中的創(chuàng)業(yè)熱情是難以熄滅的。
阿里媽媽、巨量引擎、騰訊廣告,誰是當(dāng)代“AI印鈔機(jī)”?
Manus撕開一道真相
文/八真來源/節(jié)點(diǎn)財(cái)經(jīng)具身智能賽道,誰最有可能拔得A股資本市場的頭籌?答案大概率是誕生剛剛兩年,由華為"天才少年"、B站百萬粉絲科技UP主稚暉君(彭志輝)創(chuàng)立的智元機(jī)器人。近期,從事新材料研發(fā)與生產(chǎn)的上緯新材(688585.SH)丟出重磅炸彈,宣布智元機(jī)器人及相關(guān)主體將通過收購其至少63.62%的股
文/道哥大舉裁員、清空賬號(hào)、國內(nèi)IP無法訪問——曾被譽(yù)為“中國AIAgent希望之星”的Manus,在估值飆至5億美元的高光時(shí)刻“閃離”中國市場。近日,Manus“裁員、出走”的消息在媒體端大量發(fā)酵。消息稱,Manus公司總部將由中國遷至新加坡,其國內(nèi)團(tuán)隊(duì)也將大幅裁撤——原有120人規(guī)模團(tuán)隊(duì)除40余
四個(gè)月前邀請(qǐng)碼炒至10萬元,如今官網(wǎng)變灰、社交賬號(hào)清空,這家AI新貴的閃電遷移折射中國科技企業(yè)出海潮涌。7月11日,打開Manus官網(wǎng)的用戶發(fā)現(xiàn)一則突兀提示:“Manus在你所在的地區(qū)不可用”。而就在不久前,這個(gè)位置還顯示著“Manus中文版本正在開發(fā)中”的樂觀聲明。同時(shí),Manus官方微博和小紅書
文/十界來源/節(jié)點(diǎn)財(cái)經(jīng)一場圍繞算力自主的競賽,正在科創(chuàng)板上演。近日,國產(chǎn)全功能GPU廠商摩爾線程遞交科創(chuàng)板招股書,擬募資約80億人民幣,成為今年上半年科創(chuàng)板擬募資規(guī)模最大的沖刺者,也打響了“國產(chǎn)英偉達(dá)”上市的第一槍。據(jù)招股書顯示,摩爾線程自2020年成立以來,主營全功能GPU芯片的研發(fā)與銷售,以自主
“AI大模型六小虎”百川智能危機(jī)重重。這是前搜狗CEO王小川創(chuàng)辦的AI公司。昨天就爆出新聞,百川智能的聯(lián)合創(chuàng)始人離職,這是王小川入局AI的第一道大坎。接下的成敗非常關(guān)鍵:(1)拿下河北(2)學(xué)習(xí)科大訊飛百川智能離職高端概覽:(1)2025年7月10日,百川智能技術(shù)聯(lián)合創(chuàng)始人謝劍將離職。他是百川只能的
百度AI團(tuán)隊(duì)今日正式推出PaddleOCR3.1版本,以突破性的多語言組合識(shí)別(MultilingualCompositionPerception,MCP)技術(shù)為核心,徹底重構(gòu)復(fù)雜文檔處理邊界。此次升級(jí)標(biāo)志著OCR領(lǐng)域首次實(shí)現(xiàn)對(duì)同一文檔內(nèi)任意混合語言文本的精準(zhǔn)識(shí)別,為全球化企業(yè)、跨境業(yè)務(wù)及多元文化場